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The spectrum of multiplets with two off-shell central 
charges 
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$Department of Mathematics, King's College, London, UK 

Received 19 April 1983 

Abstract. We analyse the spectrum of multiplets with two central charges which vanish 
on-shell, and show that the general spin-reducing constraint still leaves an infinite number 
of propagating modes of the same mass. We perform our analysis by deriving field 
equations from actions involving integration over the central charge dimensions. The 
implications of our results for bypassing the N = 3 barrier are briefly considered. 

1. Introduction 

The existence of an N = 3  barrier for the construction of superfield versions of 
N-extended supergravities (N- SGRS) or super Yang-Mills theories (N- SYMS) was 
proved recently (Rivelles and Taylor 1982a) under very general assumptions, and 
shown to persist in higher dimensions where there is even a barrier at N = 1 in most 
cases (see also Rocek and Siegel 1980, Rivelles and Taylor 1981, Taylor 1982a). 
Since a superfield framework is crucial for determining the ultraviolet divergence 
features of N-SGRS or N-SUMS the presence of the N = 3 barrier indicates the need 
to introduce new techniques beyond the traditional ones to avoid it. The detailed 
assumptions needed to derive the existence of the N = 3 barrier indicate how this 
might be achieved. 

The basic reason for the existence of the N = 3  barrier is that the number of 
degrees of freedom of the spinor generators {St, Shi} of the N-extended supersymmetry 
algebra (N-SUSY; we use chiral notation), with 1 S i  S N, increases too rapidly on N 
for satisfactory compensation of unphysical fields in full N-SUSY multiplets to occur. 
Thus besides the required physical fields of, say, N-SYM or N-SGR, there will also be 
other propagating fields with undesirable properties if the complete multiplets of 
N-SUSY are used. We may prevent this in (at least) one of three ways. 

Firstly, it is possible to reduce the SUSY of the superfields used to describe the 
N-SYM or N-SGR to be those of N/~-susY. This approach has been used to advantage 
in a proof (Howe et a1 1982) of the finiteness of N = 4 SYM to all orders in perturbation 
theory, and may be used to construct an N = 4 SUSY version of N = 8 SGR (Bufton 
and Taylor 1983a). However, in this case the use of supergraph Feynman rules shows 
(Grisaru and Siegel 1982) that the resulting theory is not expected to be finite to 
higher than three loops. We conclude that the loss of the full SUSY is too great to 
give a superfield theory which is powerful enough to handle the uv divergence problem 
of N-SGRS. 

@ 1983 The Institute of Physics 3037 
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It is possible to penetrate the N = 3 barrier whilst at the same time preserving the 
full internal symmetry of the N-SGR or N-SYM by sacrificing explicit Lorentz covariance. 
This destruction occurs naturally in the light-cone gauge, for which the light-cone 
supersymmetry subalgebra (N-LCSUSY) has spinorial generators which are only half 
the dimension of those of N-SUSY. In this way a full N = 4 light-cone superfield 
version of N = 4 SYM was constructed recently (Brink et a1 1982a, Mandelstam 1982) 
and used to prove the uv finiteness of N = 4 S Y M  to all orders of perturbation theory 
(Mandelstam 1982, Brink et al 1982b). This theory has been extended to include 
explicit ‘soft’ mass terms (preserving the uv finiteness) for spinors and scalars (Taylor 
1982b, Namazie et a1 1982, Parkes and West 1983, Rajpoot et a1 1983) so as to give 
a physically more attractive and applicable theory. Similarly, the construction of 
N-SGR appears possible in the light cone but, as for N/~-SUSY methods, fails to be 
powerful enough to prove finiteness of the resulting superfield perturbation expansion 
(Taylor 1 9 8 2 ~ ) .  

We are left with the possibility of modifying the underlying N-SUSY algebra by 
the addition of new generators called ‘central charges’, since they commute with all 
generators of the algebra. Thus we have that the N-SUSY algebra in the presence of 
central charges is defined by 

[St, sbl+ = 2E,pZCJ (1.1) 

[sa, 9 so,]+ = 2E cYpZ”. (1.2) 

The $ N ( N  - 1) (complex) operators Z ” ,  with 2’’ = -ZzJ, on the RHS of (1.1) commute 
with St ,  S,, and P,, J,,,  the remaining generators of the N-SUSY algebra. They do 
not do so with the generators of the automorphism group SU(N) of the N-SUSY 
algebra without central charges, reducing this group to at most USp(N) if not to a 
much smaller group. 

Analysis of the representations of the N-SUSY algebra with central charges shows 
(Sohnius 1978, Taylor 1980, Ferrara and Savoy 1982, Rands and Taylor 1983) that 
if the Dirac condition 

ps; = ZI’S,, (1.3) 

and its complex conjugate are satisfied on a representation then only S t  is needed 
as the spinor generator of the algebra and S,, may be dispensed with. Spin reduction 
will therefore have occurred, and the N = 3 barrier will have been bypassed. 

The condition (1.3) and its complex conjugate leads to the requirement 

Z‘JZJk = p 2 s ; ,  (1.4) 

We may represent Z ”  and 2” as differential operators on a space of functions zl, and 
Y”,  with 

2’’ = a/az,, 2“ = a / a f ”  (1.5) 
so that (1.4) becomes the massless wave equation in a space-time of one time and 
[ 3 + N ( N - l ) ]  space dimensions. It is well known that massless irreps of N-SUSY 
always have half the spinorial dimensions that massive ones do, thus further explaining 
the spin reduction process for irreps satisfying (1.3). 

In order to use the above central charges to avoid the N = 3 barrier we have 
therefore to incorporate the constraints (1.3) or (1.4) on certain (not necessarily all) 
multiplets being used to construct the N-SYM or N-SGR. In particular, we expect to 
use compensating multiplets satisfying (1.3) to remove the non-local constraints on 
the N-SUSY multiplet containing the Yang-Mills gauge vector or the graviton for 
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N-SYM and N-SGR respectively, this latter multiplet itself having no central charges. 
Candidate compensating multiplets of this nature have already been described else- 
where by one of us (Taylor 1981, 1982d), so that such a programme does have some 
chance of success. 

Having said that, we recognise that there is a new problem when central charges 
are present. We have to construct a supergeometric framework into which multiplets 
satisfying either 2” E O  or (1.4) must be naturally incorporated. If we introduce the 
real variables XI,, Y,, with Z,, =XI, + i Y,, , then our problem is to construct a unified 
framework in [ 4 + N ( N -  l)] dimensions ( x w ,  x,,, y,) for fields which either depend 
trivially on x,,, yIJ  or satisfy the massless wave equation in the total number of 
dimensions. We must have a large enough structure into which both alternatives can 
be embedded. We must also require that the resulting four-dimensional equations of 
motion are those expected for N-SYM or N-SGR. 

The two criteria above, of (a) triviality or masslessness and (b) correct on-shell 
dimensionally reduced theory, seem mutually incompatible. Thus we might consider 
the theory in the total [4 + N ( N  - l)] dimensions as of Kaluza-Klein form, but the 
standard method of dimensional reduction by triviality of all fields (or some specified 
dependence on the extra dimensions), or by spontaneous compactification, is not 
available due to the need for keeping massless fields in the higher dimensions. 
Dimensional reduction by Legendre transformation (Sohnius er a1 1981) is also 
unacceptable since that method only works for one extra dimension, and we would 
seem to require at least two. Moreover, we have to be able to encompass both trivial 
and massless representations during dimensional reduction, again something which 
cannot be achieved by dimensional reduction. 

Very recently we have been able to construct a dynamical theory which uses 
integration over certain of the extra central charge dimensions (Restuccia and Taylor 
1983). The region of integration in these variables is over a suitable cone r, so that 
the four-dimensional space-time R4 is at the vertex of the cone. Actions have been 
constructed by integration over the interior of r and shown to give suitable field 
equations in R4 for a wide variety of fields. In particular, superspace actions were 
shown to be most naturally given by integration over r for the bosonic variables. 

One of the unanswered problems in the above discussion was the expected spectrum 
of representations satisfying (1.3) (or (1.4)) without any further constraints. For 
simplicity we will not consider the fermionic aspects of the problem, and so take a 
scalar field 4 satisfying (1.4). What are the expected field equations in R4 for such 
a field? The answer to this question is relevant to the problem of constrained 
supergeometry for N - S Y M  or N-SGR beyond the N = 3  barrier. We will be more 
precise about this relationship in Q 5 .  Before that we present, in Q 2, a construction 
of a suitable constrained action for one extra central-charge dimension. This is 
extended in Q 3 to the case of two central charges with extra constraints beyond (1.4). 
Both of these analyses are a complementary approach to that given earlier (Restuccia 
and Taylor 19831, and lead to a final answer, which we give in $ 4 ,  to the problem 
as to the spectrum of 4 without any extra constraints beyond (1.4). 

2. One central charge 

We begin our discussion with a consideration of the scalar field 4 (x, x 5 ,  which satisfies 
the massless wave equation 

04 =a:+ (2.1) 
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In order to construct an action involving integration over R4 and x5  but yet with field 
equation reducing purely to 

(2.2) 

we use the following approach (already indicated in Restuccia and Taylor (1983)). 
We write down a four-dimensional action density L4 with fields being the boundary 
values of 4 required to specify a solution to (2.1), that is, 4(x,  0) and a54(x, 0). We 
also require that L4 give the equations of motion (2.2) when these boundary values 
are regarded as independent. Such a Lagrangian is 

D Gorse, A Restuccia and J G Taylor 

04 (x, 0 )  = as 4 (x, 0 )  = o 

L~ = 4 (x, 0104 (x, 0 )  - %a5 4 (x, o)12. (2.3) 

We now re-express the associated action A4 = L4 d4x as an integral over the half-space 
x 2 0 (or more generally x 2 x ,o$ by differentiating L4, with 4 (x, 0) and a54  (x, 0)  
now replaced by 4(x,  x’), a54(x, x ) and using the constraint (2.1). Thus we construct 

5 

A5 = d4x dx5 a5[404 -i(a54)2]= I d5x 4a5o4 (2.4) I Jxsa0 A O  

which agrees with the constrained action of Restuccia and Taylor (1983) in this case 
(where we assume all fields vanish at x5  = CO). In order to reduce (2.1) to a first-order 
constraint we introduce the fields P = 4, A = as4, and define the two-component 
vector U with uT = (P, A )  so that 

L4 = uTMu (2.5) 

where M = diag(0, -$). We call M the dynamical matrix, since the propagation or 
vanishing of the fields on-shell is described purely in terms of its diagonal elements. 

The second-order constraint (2.1) is now reduced, in terms of U, to the first-order 
constraint 

(2.6) 

We term M5 the constraint matrix, which is effectively the square root of the constraint 
(2.11, since M :  =U. 

We may now determine the matrices MTM and MM5 as 

(2.7) 

Then it is easy to see that 

U ~ ( M ~ M  +MM& = 4aso4 (2.8) 
so that we may rewrite the five-dimensional action in terms of the dynamical and 
constraint matrices as 

The particular form of (2.9) will be of value in extending to the higher-dimensional 
cases, as we shall see shortly. Before we turn to that, we note that the equations of 
motion (2.2) may be derived directly from (2.9) with the constraint (2.6) using the 
techniques of constrained optimisation theory as in Restuccia and Taylor (1983). Thus 
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the constraint (2.6) is implemented by a Lagrange multiplier A. The resulting vari- 
ational equations, taken with respect to the part U of U vanishing at x = 0 (which 
forms a vector space) and that which is the non-vanishing boundary value uo at x = 0, 
are (2.6) and 

(2.10) 2(MTM + M M ~ ) u  -(& +MT)A = O  

J dx5[2(MTM +MM5) -MT]u = 0. (2.11) 

Inserting (2.10) in (2.1 1) shows that A ( x ,  0) = 0, and since A satisfies (from (2.6) and 
(2.10)) the second-order differential equation 

(a5Ms)(MTM+MM,)-’(a,+MT)A = 0 (2.12) 

the only solution with vanishing boundary values at x 5  = 0 and x 5  = 0O will be A 3 0. 
Thus (MTM +MM5)u = 0, so that taking x = 0, and U (x, 0) = (4 ( x ) ,  d5 q5 (x)), 

W(x) = 0. 

To obtain the remaining field equation a 5 4 ( x )  = 0 in (2.1) we have to be more precise 
about the detailed behaviour of u1  and u 2  at x 5 = m  (Restuccia and Taylor 1983). 
For a fixed function a ( x 5 )  with a ( O ) = l ,  a(00)=0 we take U ~ = ( U ~ ( X , X ~ ) + ~ ( X ) ,  
V ~ ( X , X ~ ) + ~ ( X ~ ) ~ S ~ ~ ’ ( X ) ) ,  with & 4 ( x ) = 4 ’ ,  and U ( X ,  O ) = U ( X ,  00)=0. The vanishing 
of A is unchanged, but the constraint (2.6) now implies 

&(U2 +a+’) = 8 5 ( V l  + 4 )  = 0. (2.13) 

The first equation in (2.13) requires v 2 + a 4 ’ = c ( x ) ,  and from the conditions on u2 
and a at x 5  = 00 we must have c ( x )  = 0. From the vanishing of v Z ( x ,  0) then 4’ = 0, 
as required. The second of the equations (2.13) only provides the information o1 = 0. 

3. Two central charges and further constraints 

In two extra dimensions x ’, x the constraint (1.4) is 

a:+a;=o. (3.1) 

The boundary values required to specify a solution of the elliptic equation (3.1) are 
expected to involve at least two arbitrary functions defined on a one-dimensional 
surface in the x 5 - x 6  space. We wish to represent the boundary values by functions 
of x alone, so as to be evaluated at x 5  = x 6  = 0. One way to achieve that has already 
been given for the case of N = 4 SUSY (Bufton and Taylor 1983b), where it was shown 
to give an irreducible representation with spin reducing properties and two central 
charges. To achieve this reduction we need to impose the further constraints 

a: = a n  & = ( l - a ) O  (3.2) 

for some constant a.  Then the boundary values required to specify a solution of (3.2) 
have been reduced to # ( x ,  O)& # (x, 0), as# ( x ,  0) and 8s a64 (x ,  0). From the case of 
one extra dimension discussed in 8 2 and the detailed spectrum of the two-central- 
charge N = 4 SUSY irrep we expect the field equations in this case to describe two 
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propagating and two auxiliary scalars. These will therefore be the field equations in 
R4:  

W(X,  0) = o [ ( a 5 a 6 / U ) 4 ( ~ ,  0)1=a54(x,  0) = a 6 4 ( ~ ,  0). (3.3) 

L~ = 4 (x, 0104 (x, 0) + o - ' a 5  a64 (x, o ) o u - ' a 5  a 6 4  (x, 0) - i[a54 (x, o)]* - i [ a64  (x, 0)12. 
(3.4) 

As in $ 2  we define a four-component vector U with uT = (P I ,  P2, A I ,  A2) where 
PI = 4, P2 = O-'a5a64, A I  = a54 ,  A 2  = a 6 4 .  Then the dynamical matrix M similar to 
the one-dimensional case ( 2 . 5 )  is 

These equations arise from the four-dimensional Lagrange density 

M =diag(U, 0, -f, -5)  L4 = uTMu (3.5) 

where all fields in L4 are evaluated at x 5  = x 6  = 0. 
We may now reduce the constraints (3.2) to first-order form in U as 

a5u = M5 U a6u = M 6 U  a5a6u =M56u (3.6) 

where the constraint matrices M 5 ,  M6, M56 are obtained as 

0 1 0  0 
0 ( 1 - a )  0 O O a  \ u 6 = [  

0 0 0  
0 0 0 0  ( l - a )O  0 0 0 

'1 M56=M5M6. (3.7) 

We now use the procedure of 9: 2 to construct 

using the constraints (3.6). In terms of the components of U, (3.8) may be shown 
directly to be 

d6x{P2 02P1 + A2 CL4 I}. (3.9) 

Direct evaluation of the relevant matrix products similar to (2.7) allows us to show 
that (3.9) is identical to the expression involving U only: 

X S 3 0 . X k l  

A 6 = d6X [(M56 U )TMU + (M5 U )*M(M6 U ) 
5 a 0 . X h r o  

+ (M6 U )TM (M5 U ) + U ' M  (M56 U )]. (3.10) 

It is this expression, together with the constraints (3.6), which describes the theory in 
six dimensions. The derivation of the field equations (3.3) proceeds in a manner very 
similar to that for the case of one extra dimension, so we will not give it here. 

4. Two central charges 

We are now able to construct the appropriate Lagrangians in six dimensions which 
arise solely from the constraint (3.1). To do this in terms of the boundary values of 
4 (x ,x5 ,x6 )a t  thevertex V : x 5 = x 6 = 0 0 f  t h e c o n e r : x 5 a 0 , x  sowemustconstruct  6 
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a sequence of values of 4 (x, x ', x 6 ,  and its derivatives with respect to x and x whose 
values at V would be needed to specify a solution of (3.1) inside I'. There must be 
an infinite number of these, since, as we remarked in 3: 3 ,  two functions on a one- 
dimensional curve in V are expected to be required. 

We consider, therefore, the sequence 

U = =  (4,0-'a5a64, a54, a64, o-'a:4, 0-'a:a64, o-'a:4, . . .I. (4.1) 

We have used (3.1) to replace 8: by (U-&), so that we expect the values of (4.1) to 
be necessary at V to allow a solution of (3.1) in r. Moreover, if we wish to reduce 
(3.1) to a first-order constraint we cannot take a finite subset of (4.1); action of as, 86 

or 8 5 8 6  on any subset of the terms in (4.1) will always create elements outside that 
subset. Therefore U is the minimum specification of 4 at V needed for first-order 
constraints. This latter is required so as to allow a well posed optimisation problem 
to be constructed. 

Let us define the physical fields, for n 2 0, 

(4.2) 
- ( n + l )  2 n + l  

P1(n) = U-"a:"4 P 2 ( n ) = O  a s  4 

Al(n) =O-"d:""c#~ Az(n) =n-"d:"&j4. (4.3) 

L ,  = 1 [Pi (n)OPr(n) + Pz (n)OPz(n)  - +A l(n)' -$A 2 ( n ) 2 ] .  

and the auxiliary fields 

Then a four-dimensional action density embodying all the fields in (4.2) and (4.3) is 

(4.4) 
n a0 

We note that (4.4) will have as field equations at V 

C I P I ( ~ ) = O P ~ ( ~ ) = A ~ ( ~ ) = A * ( ~ ) = O  (4.5) 

(where all the fields in (4.4) and (4.5) are evaluated at x 5  = x 6 = O ) .  In other words, 
we are constructing a six-dimensional version of a theory with an infinite number of 
propagating massless scalar fields. Such a feature appears unavoidable; all the fields 
in (4.2) and (4.3) are required, as we remarked above, and the only expressions 
involving them all with the correct dimension for an action are those of (4.4) (to 
within trivial normalisation factors). We are thus forced to consider such infinite 
multiplets. 

In order to construct the six-dimensional action we note first from (4.4) that the 
dynamical matrix is the infinite matrix 

M =diag(U, U, -4, -$; 0,3, -$, -i; 0,. . .). (4.6) 

The constraint matrices embodying (3.1) may be calculated directly from the formulae 

(4.7) 
asPi(n 1 = A  i(n 1 
&Al(n) =OPl(n + 1)  

a6Pl(n 1 = A Z  (a) 

86A l(n ) = m 2 ( n )  

& P ~ ( n ) = A 2 ( n  + 1 )  

asAZ(n) =CIPz(n) 

86P2(n)=Al(n)-Al(n +1) 

a 6 A Z ( n ) = m i ( n ) - D i ( n  + I )  
(4.8) 

a5a6Pl(n) = WZ(n) 

85 86-4 l(n) = 

&a6PZ(n)=ml(n + 1 ) - m l ( n  +2) 

'35 d6A 2 (n ) = 
(4.9) 

2 (n  + 1) 1 (n  ) - I?A 1 (n  f 1). 



3044 D Gorse, A Restuccia and J G Taylor 

We see from (4.7), (4.8) and (4.9) the justification of our earlier statement that 
first-order constraints require the whole of (4.1). We may now construct the constraint 
matrices M 5 ,  M6, M56 so that (3.1) reduces to (3.6) as the infinite matrices constructed 
from (4 x 4) blocks labelled by n in (4.7)-(4.9). The diagonal blocks of M5 and k f 6  

are respectively 

0 0 0 1  :": 0 0 0 0 ,  q 1: 0 0 0 0  : a : \  (4.10) 

whilst the only other non-zero blocks in M5 are those relating the n th row block and 
the ( n  + 1)th column block as 

10 0 0 o \  

and relating the same blocks in M6 by the matrix 

(4.11a) 

(4.1 16) 

Finally 

M56 = M5M6. (4.12) 

We may now construct the six-dimensional action, as in the previous sections, as 

d6X a, a6 (U T h f U  ) 

+ A  i(n )CIA 2 (n 1 + A  ~ ( n  )m 2(n + 1)  +A, (n )m i(n + 1) 

-2Ai(n + 1)[7Az(n + 111 (4.13) 

where the last line of (4.13) arises from use of the constraint (3.1). We finally may 
show, by direct computation, that (4.13) is identical to 

This is itself identical to the form (3.10) for two central charges with the further 
constraint (3.2). The action (4.14) and the constraints (3.6), (4.10)-(4.12) are the 
basic constructions of the paper. 

We may now proceed from the action A6 to deduce the equations of motion (4.5) 
in R", using the optimisation procedure of Restuccia and Taylor (1983) which we 
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outlined for the one-dimensional case. Thus the variational equations are (3.6), 
(4.10)-(4.12) and 

2NU - (a5 +MT)A5 - (a6 + M z ) h 6  = 0 (4.15) 

and 

(4.16) 

We have dropped the third of the constraints (3.6) since it follows from the first two. 
We may solve these constraints as 

(a5 hf?)h 5 -I- ('36 + M z ) A 6  = N eXp(M5 X 5  + M 6 X g ) A o  (4.17) 

where A. is independent of x 5  and x 6 .  The boundary condition (4.16) may be rewritten, 
using (4.15), as 

Since A s  and A 6  are assumed to vanish for large x 5  and x 6  the integral (4.18), with 
(4.17), can only be defined at such values of x 5  and x 6  provided A. = 0. Thus in (4.15) 

Nu = O  

so that at V the boundary values must satisfy the equations Ou = 0. 
To obtain the vanishing of the auxiliary fields Ai ( n )  and not just OAi ( n )  requires 

a more careful consideration of the limiting values of the components of U by use of 
the fixed function a as in 9: 2; since this is straightforward we will not give its details 
here. 

Our proof has not been epsilantic in the determination of conditions that the 
infinite sums over n occurring in Lq of (4.4) and in (4.13) and (4.14) converge. The 
use of Hilbert spaces of sequences ( 1 2  spaces) will naturally ensure this, though we 
will not give any details, which can evidently be filled in by functionally minded 
readers. The extensions of our results to spinors and higher spin component fields 
will also be clear (along the lines of discussions in Restuccia and Taylor (1983)), as 
will the inclusion of gauge interactions in the above scalar and spinor cases. 

5. Discussions 

We have shown that the spin reducing constraint (1.4), in the case of N = 2, is not 
powerful enough to have only a finite number of propagating modes. The same result 
should be valid by almost identical methods, for the case of higher N. 

We have also only shown our result for component fields, though the remark at 
the end of P 4 indicates its validity for all components of a supersymmetric multiplet. 
Indeed, this is obvious: if one component field of a multiplet has such a spectrum 
then the remainder must have the same spectrum. It is also possible to consider this 
problem in a purely supersymmetric manner in terms of the N = 2  superfield ai 
satisfying (Sohnius 1978) 

(5.1) Dp(i @ j )  = DL(i @ j )  = 0. 
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The associated unconstrairied full-superspace Lagrangian is 

d6X d88(@T@i +KLliiD,(i Qj1 +KdiiDdci aj1 + HC). (5.2) 

The case of (5.1), (5.2) with the additional constraint &@i = 0 was considered earlier 
(Restuccia and Taylor 1983). Without this extra constraint we will still obtain the 
field equations 

a,@; =&@j =o .  (5.3) 

However, there will still be the infinite set of physical fields P l ( n ) ,  P 2 ( n )  of $4, so 
we still nave the infinite spectrum discovered in 9: 4. 

We now turn to discuss the relevance of our result for the problem of constructing 
N-SYM and N-SGR for N 3 3. At the linearised level we know that multiplets carrying 
central charges in a spin-reducing manner must be used as compensators, through 
field redefinition rules (Rivelles and Taylor 1982b, de Wit 1982) to remove the 
non-local constraints on vectors and higher spin fields. These latter absorb the centrally 
charged component fields either to become gauge fields of a local symmetry (gauge, 
translation or SUSY) or to become auxiliary, and so algebraically solvable by their 
equations of motion. 

The question which we have now to answer is: what are torsion constraints which 
lead to suitable spin degenerate central charge multiplets? The result of this paper 
shows conclusively that these constraints cannot reduce, at the linearised level, solely 
to (1.3) or (1.4). There must be a loss of rotation invariance in the internal symmetry 
space leading to constraints of the form (3.2) or to independence in all but one of the 
central charge dimensions, so reducing to (2.1). For otherwise there would occur 
multiplets with infinite numbers of components, which would be very difficult to 
compensate amongst each other so as to produce a finite number of components to 
compensate the non-central charge multiplets. Such constraints as (3.2) or (2.1) are 
therefore related either to breaking the residual USp(N) invariance associated with 
one central charge to at most USp(NI2) due to the appearance of constants like a in 
(3.2), or to reducing the theory to that with only one central charge by triviality in 
all the others. This gives a further guiding principle in searching for suitable constraints 
for N = 4 SYM or N 2 3 SYM. 
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